Abstract

In 1970, F. Y. M. Wan derived a single, complex-valued ordinary differential equation for an elastically isotropic right circular conical shell (“On the Equations of the Linear Theory of Elastic Conical Shells,” Studies Appl. Math., 49, pp. 69–83). The unknown was the nth Fourier component of a complex combination of the midsurface normal displacement and its static-geometric dual, a stress function. However, an attempt to formally replace the Fourier index n by a partial derivative in the circumferential angle θ results in a partial differential equation, which is eighth order in θ. The present paper takes as unknowns the traces of the bending strain and stress resultant tensors, respectively, and derives static-geometric dual partial differential equations of fourth order in both the axial and circumferential variables. Because of the explicit appearance of Poisson ratios of bending and stretching, these two equations cannot be combined into a single complex-valued equation. Reduced equations for beamlike (axisymmetric and lateral) deformations are also derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.