Abstract

SummaryConsider panel data modelled by a linear random intercept model that includes a time‐varying covariate. Suppose that our aim is to construct a confidence interval for the slope parameter. Commonly, a Hausman pretest is used to decide whether this confidence interval is constructed using the random effects model or the fixed effects model. This post‐model‐selection confidence interval has the attractive features that it (a) is relatively short when the random effects model is correct and (b) reduces to the confidence interval based on the fixed effects model when the data and the random effects model are highly discordant. However, this confidence interval has the drawbacks that (i) its endpoints are discontinuous functions of the data and (ii) its minimum coverage can be far below its nominal coverage probability. We construct a new confidence interval that possesses these attractive features, but does not suffer from these drawbacks. This new confidence interval provides an intermediate between the post‐model‐selection confidence interval and the confidence interval obtained by always using the fixed effects model. The endpoints of the new confidence interval are smooth functions of the Hausman test statistic, whereas the endpoints of the post‐model‐selection confidence interval are discontinuous functions of this statistic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.