Abstract

The characteristic-based split (CBS) method has been widely used in the finite element community to facilitate the numerical solution of Navier-Stokes (NS) equations. However, this computational algorithm has rarely been employed in the finite volume context and the stabilization of the numerical solution procedure has traditionally been addressed differently in volume-based numerical schemes. In this article, the CBS-based finite volume algorithm is employed to formulate and solve a number of laminar incompressible flow and convective heat transfer problems. Both explicit and implicit versions of the algorithm are first explained and validated in the context of the solution of a lid-driven cavity problem and a backward facing step (BFS) flow problem. The modified algorithm, capable of modelling the coupling between the momentum and energy balance equations, is then introduced and used to solve a buoyancy-driven cavity flow problem. Computational results show that the CBS finite volume algorithm can be reliably used in the solution of laminar incompressible heat and fluid flow problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.