Abstract
In this note we propose a newly formulated skew exponential power distribution that behaves substantially better than previously defined versions. This new model performs very well in terms of the large sample behavior of the maximum likelihood estimation procedure when compared to the classically defined four parameter model defined by Azzalini. More recently, approaches to defining a skew exponential power distribution have used five or more parameters. Our approach improves upon previous attempts to extend the symmetric power exponential family to include skew alternatives by maintaining a minimum set of four parameters corresponding directly to location, scale, skewness and kurtosis. We illustrate the utility of our proposed model using translational and clinical data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.