Abstract

Possibilistic logic, an extension of first-order logic, deals with uncertainty that can be estimated in terms of possibility and necessity measures. Syntactically, this means that a first-order formula is equipped with a possibility degree or a necessity degree that expresses to what extent the formula is possibly or necessarily true. Possibilistic resolution yields a calculus for possibilistic logic which respects the semantics developed for possibilistic logic. A drawback, which possibilistic resolution inherits from classical resolution, is that it may not terminate if applied to formulas belonging to decidable fragments of first-order logic. Therefore we propose an alternative proof method for possibilistic logic. The main feature of this method is that it completely abstracts from a concrete calculus but uses as basic operation a test for classical entailment. We then instantiate possibilistic logic with a terminological logic, which is a decidable subclass of first-order logic but nevertheless much more expressive than propositional logic. This yields an extension of terminological logics towards the representation of uncertain knowledge which is satisfactory from a semantic as well as algorithmic point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.