Abstract

Viscoelastic dampers (VEDs) are one of the most common passive control devices used in new and retrofit building projects which reduce the structure responses and dissipate seismic energy during an earthquake. Various methods to design this kind of dampers have been proposed based on the desired level of additional damping, eigenvalue assignment, modal strain energy, linear quadratic regulator control theories, and other approaches. In the current engineering practice, the popular method is the one based on the modal strain energy that uses the inter-story lateral stiffness as one of the main variables for damper design. However, depending on the configuration of the structure, in some cases the resulting interstory lateral stiffness can be very large. Consequently, the dampers size would also be large producing much more damping than that effectively necessary, resulting in an increase of the overall cost of the supplemental damping system and causing excessive stress on the structural elements connected to the dampers. In this paper an alternative practical design method for structures with VEDs is proposed. This method uses the inter-story shear forces as one of the main variables to accomplish the damper design compared to what was done in previous studies. Nonlinear time-history analyses were conducted on a 7-story reinforced concrete (RC) structure to check the reliability and effectiveness of the proposed method. Comparisons on the seismic performance between the structure without dampers and that equipped with VEDs were carried out. It is concluded that the proposed method results in a very suitable size of dampers, which are able to improve the performance of the structure at all levels of earthquake ground motions and satisfying the drift requirement prescribed in the codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call