Abstract

Our objective was to determine the role of cooling rate on gas-sensing properties of annealed nano-grained nickel ferrite (NiFe2O4). The sol–gel auto combustion method was used for the preparation of NiFe2O4. To estimate structural and microstructural features, X-ray diffraction, and scanning electron microscopy techniques were used. For gas-sensing measurements different volatile organic compounds (VOCs) were used as testing gases. To identify the contribution of the different sensing layer elements to the conduction, ac impedance spectroscopy (IS) measurements were performed. It was found that the sensors cooled with lower rate exhibited better sensing performance, due to increase of resistance. Overall, this article covers an alternative method for modifying nickel ferrite gas sensor sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.