Abstract

A typical problem of estimation principles of variance and covariance components is that they do not produce positive variances in general. This caveat is due, in particular, to a variety of reasons: (1) a badly chosen set of initial variance components, namely initial value problem (IVP), (2) low redundancy in functional model, (3) an improper stochastic model, and (4) data’s possibility of containing outliers. Accordingly, a lot of effort has been made in order to design non-negative estimates of variance components. However, the desires on non-negative and unbiased estimation can seldom be met simultaneously. Likewise, in order to search for a practical non-negative estimator, one has to give up the condition on unbiasedness, which implies that the estimator will be biased. On the other hand, unlike the variance components, the covariance components can be negative, so the methods for obtaining non-negative estimates of variance components are not applicable. This study presents an alternative method to non-negative estimation of variance components such that non-negativity of the variance components is automatically supported. The idea is based upon the use of the functions whose range is the set of all positive real numbers, namely positive-valued functions (PVFs), for unknown variance components in stochastic model instead of using variance components themselves. Using the PVF could eliminate the effect of IVP on the estimation process. This concept is reparameterized on the restricted maximum likelihood with no effect on the unbiasedness of the scheme. The numerical results show the successful estimation of non-negativity estimation of variance components (as positive values) as well as covariance components (as negative or positive values).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.