Abstract

The spin-forbidden photo-ionization of diatomic molecules is proposed. Spin orbit interaction is invoked resulting in the correction and mixing of the wave functions of different multiplicities. The rotation–electronic selection rules given, but not proven, by Dixit and McKoy for Hund's case a based on the conventional mechanism of electric dipole transition (see Chem. Phys. Lett. 128, 49 (1986) are rederived and expressed in a different format. This new format permits the generalization of the selection rules to other photo-ionization transitions caused by the magnetic dipole, the electric quadrupole, and the two- and three-photon operators. These selection rules, which are for transitions from one specific rotational level of a given Kronig reflection symmetry to another, will help understand rotational branching and the dynamics of interaction in the excited state. They will also help in the selective preparation of well-defined rovibronic states in resonant-enhanced multi-photon ionization processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call