Abstract

In this paper, a novel configuration is proposed for the implementation of an almost all-optical switch architecture called the scheduling switch, which when combined with appropriate wait-for-reservation or tell-and-go connection and flow control protocols provides lossless communication for traffic that satisfies certain smoothness properties. An all-optical 2/spl times/2 exchange/bypass (E/B) switch based on the nonlinear operation of a semiconductor optical amplifier (SOA) is considered as the basic building block of the scheduling switch as opposed to active SOA-based space switches that use injection current to switch between ON and OFF states. The experimental demonstration of the optically addressable 2/spl times/2 E/B, which is summarized for 10-Gb/s data packets as well as synchronous digital hierarchy (SDH)/STM-64 data frames, ensures the feasibility of the proposed configuration at high speeds, with low switching energy and low losses during the scheduling process. In addition, it provides reduction of the number of required components for the construction of the scheduling switch, which is calculated to be 50% in the number of active elements and 33% in the fiber length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.