Abstract

In order to satisfy the demand for the cyclic stability of commercial Ni-MH anodes, a PuNi3-type La0.6Gd0.2Mg0.2Ni2.6Co0.3Al0.1 alloy with excellent overall electrochemical properties was prepared by annealing the as-cast alloy sample at different temperatures for a week. The alloy had the highest PuNi3-type content of 86.9 wt% (1073 K), which offered a capacity retention of 69.6% after 100 cycles. However, 23.7 wt% PuNi3 type phase of the alloy constantly converted into the Ce2Ni7 type phase within a temperature increase of 50 °C, which improved the capacity retention by 12.1% under the same discharge capacity. We found that the addition of Gd did not change the stacked [LaMgNi4]/[LaNi5] superlattice and it maintained the structural stability of the crystal as well as its anti-corrosion, which is also a key factor to improve cyclic stability. These findings imply that alloys with both PuNi3-type and Ce2Ni7-type multiphase structures can be considered as a new choice for hydrogen storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.