Abstract

This study is an attempt to modeling a frictional gap in a crack closure process under compressive loading conditions in which the crack surfaces are in touch and the effects of friction between them are significant. An iterative finite element (FE) solution is developed to model a finite crack in an interfacial layer with varying material properties. A mere application of a Lagrange multiplier formulation (node-to-node, NTN, or node-to-segment, NTS) in a developed FE framework to fulfill the contact constraints between contacting surfaces is discussed which improves the penalty formulation used in ANSYS. We then argue that the penalty formulation allows for a certain amount of crack surface interpenetration whereas the Lagrange multiplier formulation fulfils the contact constraints more accurately. This technique is easy to implement and offers higher accuracy than the equivalent FE solution, available in commercial FE software such as ANSYS 9.0, to the same system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.