Abstract

A multivariate, non-Bayesian, regression-based, or feasible generalized least squares (GLS)-based approach is proposed to estimate time-varying VAR parameter models. Although it has been known that the Kalman-smoothed estimate can be alternatively estimated using GLS for univariate models, we assess the accuracy of the feasible GLS estimator compared with commonly used Bayesian estimators. Unlike the maximum likelihood estimator often used together with the Kalman filter, it is shown that the possibility of the pile-up problem occurring is negligible. In addition, this approach enables us to deal with stochastic volatility models, models with a time-dependent variance–covariance matrix, and models with non-Gaussian errors that allow us to deal with abrupt changes or structural breaks in time-varying parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.