Abstract
In this paper an alternative derivation of Katsevich's cone-beam image reconstruction algorithm is presented. The starting point is the classical Tuy's inversion formula. After (i) using the hidden symmetries of the intermediate functions, (ii) handling the redundant data by weighting them, (iii) changing the weighted average into an integral over the source trajectory parameter, and (iv) imposing an additional constraint on the weighting function, a filtered backprojection reconstruction formula from cone beam projections is derived. The following features are emphasized in the present paper: First, the nontangential condition in Tuy's original data sufficiency conditions has been relaxed. Second, a practical regularization scheme to handle the singularity is proposed. Third, the derivation in the cone beam case is in the same fashion as that in the fan-beam case. Our final cone-beam reconstruction formula is the same as the one discovered by Katsevich in his most recent paper. However, the data sufficiency conditions and the regularization scheme of singularities are different. A detailed comparison between these two methods is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.