Abstract

Listwise learning-to-rank methods form a powerful class of ranking algorithms that are widely adopted in applications such as information retrieval. These algorithms learn to rank a set of items by optimizing a loss that is a function of the entire set -- as a surrogate to a typically non-differentiable ranking metric. Despite their empirical success, existing listwise methods are based on heuristics and remain theoretically ill-understood. In particular, none of the empirically successful loss functions are related to ranking metrics. In this work, we propose a cross entropy-based learning-to-rank loss function that is theoretically sound, is a convex bound on NDCG -- a popular ranking metric -- and is consistent with NDCG under learning scenarios common in information retrieval. Furthermore, empirical evaluation of an implementation of the proposed method with gradient boosting machines on benchmark learning-to-rank datasets demonstrates the superiority of our proposed formulation over existing algorithms in quality and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.