Abstract

GOCE is the first satellite with a gravitational gradiometer (SGG). This allows to determine a gravity field model with high spatial resolution and high accuracy. Four of the six independent components of the gravitational gradient tensors (GGT) are measured with high accuracy in the so-called measurement band (MB) from 5 to 100mHz by the GOCE gradiometer. Based on more than 1 year of GOCE measurements, two gravity field models have been derived. Here, we introduce a strategy for spherical harmonic analysis (SHA) from GOCE measurements, with a bandpass filter applied to the SGG data, combined with orbit analysis based on the integral equation approach, and additional constraints (or stabilization) in the polar areas where no observation is available due to the orbit geometry. In addition, we combined the GOCE SGG part with a set of GRACE normal equations. This improves the accuracy of the gravity field in the long-wavelength parts, due to the complementarity of GOCE and GRACE. Comparison with other models and with external data shows that our results are rather close to the GPS-levelling data in well-selected test regions, with an uncertainty of 4–7cm, for truncation at degree 200.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.