Abstract

Identifying key nodes, estimating the probability of connection between them, and distinguishing latent groups are some of the main objectives of social network analysis. In this paper, we propose a class of blockmodels to model stochastic equivalence and visualize groups in an unobservable space. In this setting, the proposed method is based on two approaches: latent distances and latent dissimilarities at the group level. The projection proposed in the paper is performed without needing to project individuals, unlike the main approaches in the literature. Our approach can be used in undirected or directed graphs and is flexible enough to cluster and quantify between and within-group tie probabilities in social networks. The effectiveness of the methodology in representing groups in latent spaces was analyzed under artificial datasets and in two case studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.