Abstract

Using the general solution of the differential equation x¨(t)+g1(t)x˙+g2(t)x=0, a generic basis of the point-symmetry algebra sl(3,R) is constructed. Deriving the equation from a time-dependent Lagrangian, the basis elements corresponding to Noether symmetries are deduced. The generalized Lewis invariant is constructed explicitly using a linear combination of Noether symmetries. The procedure is generalized to the case of systems of second-order ordinary differential equations with maximal sl(n+2,R)-symmetry, and its possible adaptation to the inhomogeneous non-linear case illustrated by an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.