Abstract

Recently, mining negative association rules has received some attention and been proved to be useful in real world. This paper presents an efficient algorithm (PNAR) for mining both positive and negative association rules in databases. The algorithm extends traditional association rules to include negative association rules. When mining negative association rules, we use same minimum support threshold to mine frequent negative itemsets. With a Yule's Correlation Coefficient measure and pruning strategies, the algorithm can find all valid association rules quickly and overcome some limitations of the previous mining methods. The experimental results demonstrate its effectiveness and efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.