Abstract

In this work, we use a simplified version of Young’s solution for the steady-state Joule-heating, that uses temperature dependent thermal and electrical conductivities, to find the temperature and displacement behavior of a V-shaped electrothermal microactuator (ETMA) device. In order to test and validate our approach we performed FEM simulations and actually built an ETMA device by microfabrication. The experimental device displacement was measured in vacuum, with a scanning electron microscope. Our numerical results agree quite well with the FEM simulation and experimental results up to a displacement of (0.8 ± 0.2) $\mu \text{m}$ and applied current of 30 mA. Above 35 mA, an abrupt variation of the resistivity is observed followed by surface degradation at 50 mA and device melting at 52 mA. The validity of our approach is discussed of the device geometry and material parameters. [2019-0208]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.