Abstract

In the past few years, the graphics processing unit (GPU) has been widely used to accelerate time-consuming models in simulations. Since both model computation and simulation management are main factors that affect the performance of large-scale simulations, only accelerating model computation will limit the potential speedup. Moreover, models that can be well accelerated by a GPU could be insufficient, especially for simulations with many lightweight models. Traditionally, the parallel discrete event simulation (PDES) method is used to solve this class of simulation, but most PDES simulators only utilize the central processing unit (CPU) even though the GPU is commonly available now. Hence, we propose an alternative approach for collaborative simulation execution on a CPU+GPU hybrid system. The GPU supports both simulation management and model computation as CPUs. A concurrency-oriented scheduling algorithm was proposed to enable cooperation between the CPU and the GPU, so that multiple computation and communication resources can be efficiently utilized. In addition, GPU functions have also been carefully designed to adapt the algorithm. The combination of those efforts allows the proposed approach to achieve significant speedup compared to the traditional PDES on a CPU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call