Abstract

This study gives an alternative analytical solution for water-wave motion over an offshore submerged horizontal porous-plate breakwater in the context of linear potential theory. The matched-eigenfunction-expansions method is used to obtain the solution. The solution consists of a symmetric part and an antisymmetric part. The symmetric part is also the solution of wave reflection by a vertical solid wall with a submerged horizontal porous plate attached to it. In comparison with previous analytical solutions with respect to finite submerged horizontal porous plates, no complex water-wave dispersion relations are included in the present solution. Thus, the present solution is easier for numerical implementation. Numerical examples show that the convergence of the present solution is satisfactory. The results of the present solution also agree well with previous results by different analytical approaches, as well as previous numerical results by different boundary-element methods. The present solution can be easily extended to the case of multi-layer submerged horizontal porous plates, which may be more significant in practice for meeting different tide levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.