Abstract

An alternating direction dual augmented Lagrangian method for second-order cone programming (SOCP) problems is proposed. In the algorithm, at each iteration it first minimizes the dual augmented Lagrangian function with respect to the dual variables, and then with respect to the dual slack variables while keeping the other two variables fixed, and then finally it updates the Lagrange multipliers. Convergence result is given. Numerical results demonstrate that our method is fast and efficient, especially for the large-scale second-order cone programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.