Abstract

In the present study, we report on the X-ray crystallographic structure of a GH32 invertase mutant, (i.e., the Arabidopsis thaliana cell-wall invertase 1-E203Q, AtcwINV1-mutant) in complex with sucrose. This structure was solved to reveal the features of sugar binding in the catalytic pocket. However, as demonstrated by the X-ray structure the sugar binding and the catalytic pocket arrangement is significantly altered as compared with what was expected based on previous X-ray structures on GH-J clan enzymes. We performed a series of docking and molecular dynamics simulations on various derivatives of AtcwINV1 to reveal the reasons behind this modified sugar binding. Our results demonstrate that the E203Q mutation introduced into the catalytic pocket triggers conformational changes that alter the wild type substrate binding. In addition, this study also reveals the putative productive sucrose binding modus in the wild type enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call