Abstract

A novel and efficient synthetic pathway toward known meso-tetraphenylporpholactams, also applicable to the synthesis of hitherto unknown and inaccessible meso-C6F5-substituted porpholactam, is detailed (dioxochlorin → dioxochlorin urea adduct → porpholactam). meso-Tetraphenylporpholactam was converted to an imidazoloporphyrin-α-triflate derivative that was demonstrated to be of utility for the generation of functionalized imidazoloporphyrins with a substituted amine adjacent to the outside N atom of the imidazole moiety (using pyridine, Et2NH, diethyliminodiacetic acetate, dipicolylamine (DPA), and cyclen). The DPA- and iminodiacetate-imidazoloporphyrin conjugates were structurally characterized. The chemosensing potential of the metal chelate-imidazoloporphyrin conjugates was evaluated, though their constrained metric parameters led to muted chemosensing responses to various divalent metal ions. The accessibility of the meso-arylporpholactams and the meso-tetraphenylimidazoloporphyrin triflate enables the continued exploration of porphyrin-like pyrrole-modified porphyrins that incorporate a nitrogen atom in place of a β-carbon atom in their macrocycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.