Abstract

Isotope effects in the nucleophile and in the leaving group were measured to gain information about the mechanism and transition state of the hydrolysis of methyl p-nitrophenyl phosphate complexed to a dinuclear cobalt complex. The complexed diester undergoes hydrolysis about 1011 times faster than the corresponding uncomplexed diester. The kinetic isotope effects indicate that this rate acceleration is accompanied by a change in mechanism. A large inverse 18O isotope effect in the bridging hydroxide nucleophile (0.937 +/- 0.002) suggests that nucleophilic attack occurs before the rate-determining step. Large isotope effects in the nitrophenyl leaving group (18Olg = 1.029 +/- 0.002, 15N = 1.0026 +/- 0.0002) indicate significant fission of the P-O ester bond in the transition state of the rate-determining step. The data indicate that in contrast to uncomplexed diesters, which undergo hydrolysis by a concerted mechanism, the reaction of the complexed diester likely proceeds via an addition-elimination mechanism. The rate-limiting step is expulsion of the p-nitrophenyl leaving group from the intermediate, which proceeds by a late transition state with extensive bond fission to the leaving group. This represents a substantial change in mechanism from the hydrolysis of uncomplexed aryl phosphate diesters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call