Abstract

For $\alpha\in (1,2)$, we present a generalized central limit theorem for $\alpha$-stable random variables under sublinear expectation. The foundation of our proof is an interior regularity estimate for partial integro-differential equations (PIDEs). A classical generalized central limit theorem is recovered as a special case, provided a mild but natural additional condition holds. Our approach contrasts with previous arguments for the result in the linear setting which have typically relied upon tools that are non-existent in the sublinear framework, for example, characteristic functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.