Abstract

InGaN-based light-emitting diodes (LEDs) grown on triangle-shaped patterned sapphire substrates were separated through a chemical lift-off process by laterally etching an AlN sacrificial layer at the GaN/sapphire substrate interface. After the epitaxial growth, an air-void structure was observed at the patterned region on the sapphire substrate that provided an empty space to increase the lateral etching rate of the AlN buffer layer. The lateral etching rate of the AlN buffer layer was calculated at 10 µm/min for the 100-µm-width LED chip that was lifted off from the sapphire substrate. A triangular-shaped hole structure and a hexagonal-shaped air-void structure were observed on the lift-off GaN surface that was transferred from the patterned sapphire substrate. Comparing to the LED/sapphire structure, a peak wavelength blueshift phenomenon of the micro-photoluminescence spectra was observed on the lifted off LED chip caused by the release of a compressive strain at the GaN/sapphire substrate interface. The chemical lift-off process was achieved by using an AlN buffer layer as a sacrificial layer in a hot potassium hydroxide solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call