Abstract

The incremental hole-drilling method is the method of choice to determine residual stress depth distributions with limited costs and minor destruction of the investigated component. With a spatial resolution of commonly two millimeters in diameter and one millimeter in depth especially the effects of frequently used surface treatments like e.g. shot peening or deep rolling can be reliably detected if the in depth residual stress gradients are relatively smooth. Nevertheless up to now the quantitative accuracy of the method is poor for residual stress analyses close to the materials surface up to depths of approximately 0.2 mm and in the case of steep in-depth residual stress gradients or oscillating residual stress depth distributions. In this paper, residual stress depth distributions of a broad range introduced by mechanical surface-treatments in flat specimens were analyzed with the hole-drilling method and compared with the results measured by X-ray diffraction as the reference. It comes out, that arbitrary residual stress depth distributions can be successfully determined with a modified differential evaluation formalism. For this purpose, often neglected well known weak points of the hole-drilling method were considered and improved, e.g. hole geometry, numerical calibration and data conditioning. Especially, the proposed strategy of data conditioning results in an almost user-independent evaluation formalism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call