Abstract

Any earthquake service that maintains a seismic network operates an earthquake monitoring system (EMS), which is a combination of software capable of acquiring, processing, and archiving large volumes of real-time continuous seismic data. Crucially, the processing includes the automatic detection, location, and quantification of earthquakes. Manual review and alert dissemination are typically also core components of an EMS. There are a small number of modern and complete EMSs available to the seismological community; only a couple of these are free. A new seismic network must decide which EMS to operate, and even established networks are periodically required to consider either updating or overhauling their operational EMS. Often, a seismic network has operated a particular EMS for several years and, in some cases, decades. Although there are few options, the selection of the appropriate EMS to operate is not at all a trivial choice. The enduringly popular Earthworm was the first true EMS. Carl Johnson from the U.S. Geological Survey (USGS), a lead developer of the original system, followed a set of design principles that “guide the design and implementation of a seismic processing system”: modularity, system independence, scalability, connectivity, and robustness (from www.earthwormcentral.org/). More than two decades later, these could still serve as the guiding principles for the general design and development of a sustainable EMS. In this opinion piece, we compare two of the leading cost-free options: Earthworm and SeisComP3. This opinion paper is intended to aid network seismologists who need to select or migrate to a new monitoring system for earthquake surveillance. We do not pretend to have the definitive answer to this complex decision. Indeed, selecting the right software is highly network dependent, requiring reflection on the specific network goals, existing network boundary conditions (e.g., field sensors), and available expertise. Nonetheless, we aim to offer a summary …

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call