Abstract

PurposeThe purpose of this paper is to derive a robust nonlinear attitude control law intended for practical application.Design/methodology/approachThe method of input/output feedback linearization is utilized for having a linear model and a recently developed almost disturbance decoupling (ADD) approach is adopted for designing a robust satellite attitude control (SAC) system. The kinematics of the satellite is modeled by modified Rodriguez parameters because of their continuous invertibility. The design is simulated on the model of a realistic satellite project (BILSAT‐I), which is developed by the Turkish Scientific and Technological Research Council.FindingsThe torque requirement of the operation does not exceed the maximum limit provided by the actuator. The square error levels are staying under the boundary of final global attractor, which is one of the important proofs for the successful operation of the generated ADD control law.Originality/valueThe ADD concept is investigated on SAC problem. By that way, simple control structures with known disturbance attenuation capability can be designed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.