Abstract

Almahata Sitta is a polymict breccia, consisting of many kinds of clasts. Here we present our mineralogical and petrological results on an EL3 fragment, MS-177 from Almahata Sitta. This fragment shows a typical type 3 chondritic texture, consisting of well-defined chondrules, isolated silicate minerals, and opaque nodules. Most chondrules are enstatite-rich with some having olivine. Although these components are typical of EL3 chondrites, the mineral abundances and compositions are different from the other EL3s. Diopside is unusually abundant in MS-177. On the other hand, perryite and daubreelite were not found. The major pyroxene is orthoenstatite, and the silica phase is quartz. Fe–Ni metal has relatively high P contents. Troilite is enriched in Cr and Mn. Keilite and buseckite are present in MS-177. From the mineralogy and texture, MS-177 experienced a high-temperature event under subsolidus conditions. Shock-induced heating for a short duration might explain this high-temperature event. We suggest that other E3 chondrites also experienced heating events under such subsolidus conditions on their parent bodies. On the other hand, the high abundance of diopside cannot be explained by a secondary thermal event and may have been a primary feature of MS-177, formed before accretion to the parent body.

Highlights

  • Almahata Sitta fell in northern Sudan on October 7, 2008 and is a remarkable polymict breccia consisting of various ureilitic and chondritic fragments (e.g., Bischoff et al 2010a, b; Horstmann and Bischoff 2014)

  • We studied the opaque minerals in MS-177 to help constrain its thermal history

  • The texture of MS-177 is indicative of a type 3 E chondrite, which is supported by the occurrence of olivine in some chondrules (Weisberg and Kimura 2012; Weyrauch et al 2018)

Read more

Summary

Introduction

Almahata Sitta fell in northern Sudan on October 7, 2008 and is a remarkable polymict breccia consisting of various ureilitic and chondritic fragments (e.g., Bischoff et al 2010a, b; Horstmann and Bischoff 2014). The chondritic fragments include enstatite (E), ordinary, carbonaceous, and R-like chondrites. E chondritic fragments include EH3-6, EL3-6, and impact melt rocks. We present a mineralogical and petrological study of the E chondrite fragment MS-177, which is classified as an EL3 (Hain, 2012; El Goresy et al 2012). Many studies have been conducted on EL3 but EH3 chondrites, to understand their complex thermal histories. Lin and El Goresy (2002) and Horstmann

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call