Abstract
Abstract ALMA surveys of nearby star-forming regions have shown that the dust mass in the disk is correlated with the stellar mass, but with a large scatter. This scatter could indicate either different evolutionary paths of disks or different initial conditions within a single cluster. We present ALMA Cycle 3 follow-up observations for 14 Class II disks that were low signal-to-noise (S/N) detections or non-detections in our Cycle 2 survey of the ∼2 Myr old Chamaeleon I star-forming region. With five times better sensitivity, we detect millimeter dust continuum emission from six more sources and increase the detection rate to 94% (51/54) for Chamaeleon I disks around stars earlier than M3. The stellar-disk mass scaling relation reported in Pascucci et al. is confirmed with these updated measurements. Faint outliers in the F mm–M * plane include three non-detections (CHXR71, CHXR30A, and T54) with dust mass upper limits of 0.2 M ⊕ and three very faint disks (CHXR20, ISO91, and T51) with dust masses ∼0.5 M ⊕. By investigating the SED morphology, accretion property and stellar multiplicity, we suggest for the three millimeter non-detections that tidal interaction by a close companion (≲100 au) and internal photoevaporation may play a role in hastening the overall disk evolution. The presence of a disk around only the secondary star in a binary system may explain the observed stellar SEDs and low disk masses for some systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.