Abstract

Allysine, a pivotal biomarker in fibrogenesis, has prompted the development of various radioactive imaging probes. However, fluorogenic probes targeting allysine remain largely unexplored. Herein, by leveraging the equilibrium between the nonfluorescent spirocyclic and the fluorescent zwitterionic forms of rhodamine-cyanine hybrid fluorophores, we systematically fine-tuned the environmental sensitivity of this equilibrium toward the development of fluorogenic probes for fibrosis. The trick lies in modulating the nucleophilicity of the ortho-carboxyl group, which is terminated with a hydrazide group for allysine conjugation. Probe B2 was developed with this strategy, which featured an N-sulfonyl amide group and exhibited superior fibrosis-to-control imaging contrast. Initially presenting as nonfluorescent spirocyclic aggregates in aqueous solutions, B2 displayed a notable fluorogenic response upon conjugation with protein allysine through its hydrazide group, inducing deaggregation and switching to the fluorescent zwitterionic form. Probe B2 outperformed the traditional Masson stain in imaging contrast, achieving an about 260-2600-fold ratio for fibrosis-to-control detection depending on fibrosis severity. Furthermore, it demonstrated efficacy in evaluating antifibrosis drugs. Our results emphasize the potential of this fluorogenic probe as an alternative to conventional fibrosis detection methods. It emerges as a valuable tool for antifibrosis drug evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.