Abstract

Aquaporin-4 (AQP4), the main water channel of the brain, is highly expressed in animal glioma and human glioblastoma in situ. In contrast, most cultivated glioma cell lines don’t express AQP4, and primary cell cultures of human glioblastoma lose it during the first passages. Accordingly, in C6 cells and RG2 cells, two glioma cell lines of the rat, and in SMA mouse glioma cell lines, we found no AQP4 expression. We confirmed an AQP4 loss in primary human glioblastoma cell cultures after a few passages. RG-2 glioma cells if grafted into the brain developed AQP4 expression. This led us consider the possibility of AQP4 expression depends on brain microenvironment. In previous studies, we observed that the typical morphological conformation of AQP4 as orthogonal arrays of particles (OAP) depended on the extracellular matrix component agrin. In this study, we showed for the first time implanted AQP4 negative glioma cells in animal brain or flank to express AQP4 specifically in the intracerebral gliomas but neither in the extracranial nor in the flank gliomas. AQP4 expression in intracerebral gliomas went along with an OAP loss, compared to normal brain tissue. AQP4 staining in vivo normally is polarized in the astrocytic endfoot membranes at the glia limitans superficialis and perivascularis, but in C6 and RG2 tumors the AQP4 staining is redistributed over the whole glioma cell as in human glioblastoma. In contrast, primary rat or mouse astrocytes in culture did not lose their ability to express AQP4, and they were able to form few OAPs.

Highlights

  • Aquaporin-4 (AQP4) is the predominant water channel in the brain and it is mainly expressed by astrocytes and ependymal cells

  • The results of this study indicate that AQP4 expression of grafted glioma cells depends on the surrounding microenvironment

  • They observed that a lot of glioma cell lines did not express AQP4

Read more

Summary

Introduction

Aquaporin-4 (AQP4) is the predominant water channel in the brain and it is mainly expressed by astrocytes and ependymal cells. The two most important and best studied AQP4 isoforms are M23 and the 22 amino acids longer isoform M1. Both isoforms exhibit different water transport capacities [2]. AQP4 is characterized by the freeze fracturing technique revealing orthogonal arrays of particles (OAP; for a recent review, see [3]). In astrocytes, they were first described in 1973 by Dermietzel [4]. A cell which was transfected with both AQP4 isoforms showed typical OAPs which were sized as normal astrocytes in healthy brain or in vitro [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call