Abstract

The unicellular protozoan Histomonas meleagridis is notorious for being the causative agent of histomonosis, which can cause high mortality in turkeys and substantial production losses in chickens. The complete absence of commercially available curative strategies against the disease renders the devising of novel approaches a necessity. A fundamental step toward this objective is to understand the flagellate's virulence and attenuation mechanisms. For this purpose we have previously conducted a comparative proteomic analysis of an in vitro cultivated virulent and attenuated histomonad parasite using two-dimensional electrophoresis and MALDI-TOF/TOF. The current work aimed to substantially extend the knowledge of the flagellate's proteome by applying 2D-DIGE and sequential window acquisition of all theoretical mass spectra (SWATH) MS as tools on the two well-defined strains. In the gel-based experiments, 49 identified protein spots were found to be differentially expressed, of which 37 belonged to the in vitro cultivated virulent strain and 12 to the attenuated one. The most frequently identified proteins in the virulent strain take part in cytoskeleton formation, carbohydrate metabolism and adaptation to stress. However, post-translationally modified or truncated ubiquitous cellular proteins such as actin and GAPDH were identified as upregulated in multiple gel positions. This indicated their contribution to processes not related to cytoskeleton and carbohydrate metabolism, such as fibronectin or plasminogen binding. Proteins involved in cell division and cytoskeleton organization were frequently observed in the attenuated strain. The findings of the gel-based studies were supplemented by the gel-free SWATH MS analysis, which identified and quantified 42 significantly differentially regulated proteins. In this case proteins with peptidase activity, metabolic proteins and actin-regulating proteins were the most frequent findings in the virulent strain, while proteins involved in hydrogenosomal carbohydrate metabolism dominated the results in the attenuated one.

Highlights

  • The unicellular microaerophilic poultry parasite Histomonas meleagridis, first classified in 1920 (Tyzzer, 1919), is a member of the order Tritrichomonadida (Cepicka et al, 2010)

  • The landmark spot, which was distinctive at pI 5 and a molecular mass (Mr) of ∼50 kDa (Figures S3, S4), was known to be actin of H. meleagridis origin based upon a previous study (Monoyios et al, 2018)

  • This study corroborated, and to a greater extent supplemented the findings of the first H. meleagridis proteomic analysis that utilized conventional two-dimensional electrophoresis (2-DE) (Monoyios et al, 2018)

Read more

Summary

Introduction

The unicellular microaerophilic poultry parasite Histomonas meleagridis, first classified in 1920 (Tyzzer, 1919), is a member of the order Tritrichomonadida (Cepicka et al, 2010). In the course of the disease the parasite invades the caecum, it gains access to the circulatory system through which it travels to the liver and other organs. The necrosis of the liver, which is frequently seen in turkeys, can lead to high mortality (reviewed in McDougald, 2005). In chickens, this gross pathological finding is less common, but severe clinical signs including significant drop in egg production were recorded (Hess and McDougald, 2013). In recent years histomonosis re-emerged, due to the withdrawal of previously effective anti-histomonad drugs and the gaining popularity of free-range poultry farming (reviewed in Hess et al, 2015)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call