Abstract
For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And H ε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy.
Highlights
Quantum computing is a new class of computing algorithms based on the concepts and principles of quantum theory, such as superposition of quantum states, entanglement, and intervention
We presented an allele real-coded quantum evolutionary algorithm (ARQEA) based on hybrid updating strategy
The remainder of this paper is organized as follows: in Section 2, an allele real-coded quantum evolutionary algorithm is proposed in which the real coding as well as hybrid update strategy is presented; in Section 3, the global convergence of proposed algorithm is verified by Markov chain
Summary
Quantum computing is a new class of computing algorithms based on the concepts and principles of quantum theory, such as superposition of quantum states, entanglement, and intervention. QEA has advantages, including the diversity of population, global search performance, and convergence rate, compared with other evolutionary algorithms due to Q-bits coding and the updating of rotation gate. We presented an allele real-coded quantum evolutionary algorithm (ARQEA) based on hybrid updating strategy. The proposed algorithm employs a real-coding to maintain the diversity of allele and introduces a hybrid updating strategy to balance performance between global search and local search in order to improve the convergence rate. The remainder of this paper is organized as follows: in Section 2, an allele real-coded quantum evolutionary algorithm is proposed in which the real coding as well as hybrid update strategy is presented; in Section 3, the global convergence of proposed algorithm is verified by Markov chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.