Abstract

To exploit the high-temperature superinsulation potential of anisotropic thermal management materials, the incorporation of ceramic aerogel into the aligned structural networks is indispensable. However, the long-standing obstacle to exploring ultralight superinsulation ceramic aerogels is the inaccessibility of its mechanical elasticity, stability, and anisotropic thermal insulation. In this study, we report a recoverable, flexible ceramic fiber-aerogel composite with anisotropic lamellar structure, where the interfacial cross-linking between ceramic fiber and aerogel is important in its superinsulation performance. The resulting ultralight aerogel composite exhibits a density of 0.05 g/cm3, large strain recovery (over 50%), and low thermal conductivity (0.0224 W m-1 K-1), while its hydrophobicity is achieved by in situ trichlorosilane coating with the water contact angle of 135°. The hygroscopic tests of such aerogel composites demonstrate a reversible thermal insulation. The mechanical elasticity and stability of the anisotropic composites, with its soundproof performance, shed light on the low-cost superelastic aerogel manufacturing with scalability for energy saving building applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.