Abstract

Superhydrophobic surfaces with micro-/nanohierarchical structures are mechanically weak. Generally, organic solvents are used to dissolve or disperse organic adhesives and modifiers to enhance the mechanical strength of superhydrophobic surfaces. In this work, an all-water-based spraying solution is developed for the preparation of robust superhydrophobic surfaces, which contains ZnO nanoparticles, aluminum phosphate as an inorganic adhesive, and polytetrafluoroethylene with low surface energy. The all-water-based system is appreciated for low price and less pollution. Importantly, the prepared superhydrophobic surfaces are durable enough against various harsh conditions (such as UV irradiation for 12 h, pH values from 1 to 13, and temperatures from −10 to 300 °C for 12 h) and physical damages (including sandpaper abrasion and sand impact tests for 50 cycles). In addition, the obtained interfacial materials show promise for practical applications such as anti-icing and oil-water separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call