Abstract

An all-optical photoacoustic spectrometer based on the diaphragm-based extrinsic Fabry–Perot interferometer (EFPI) fiber acoustic sensor for trace gas detection at atmospheric pressure and room temperature is first developed. The diaphragm-based EFPI fiber acoustic sensor is used to replace the conventional acoustic sensor in this system. Tunable erbium-doped fiber ring laser (TEDFRL) with an erbium-doped fiber amplifier (EDFA) is used as the excitation light source for the generation of the photoacoustic (PA) signal. A first longitudinal resonant PA cell with double absorption optical path is used to improve the sensitivity of the system. The advantages of all-optical photoacoustic spectrometer are immunity to electromagnetic interference, safely in flammable and explosive situations, and long distance sensing. This system is developed for the continuous and real-time measurement of acetylene gas at room temperature and atmospheric pressure. With the wavelength modulation and lock-in harmonic detection method, the minimum detectable limit of 1.56 parts-per-billion (ppb) volume acetylene (signal-to-noise ratio, SNR = 1) at the 1530.37 nm transition line was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.