Abstract

Helicobacter pylori (H. pylori) infection is a major cause of gastric diseases. Currently, bismuth-based quadruple therapy is widely adopted for eradicating H. pylori infection. However, this first-line strategy faces several challenges such as drug resistance, intestinal dysbacteriosis, and patients’ poor compliance. To overcome these problems, an all-in-one therapeutic platform (CLA-Bi-ZnO2@Lipo) that composed of liposomes loading clarithromycin (CLA), Bi, and ZnO2 hybrid nanoparticles was developed for eradicating multidrug-resistant (MDR) H. pylori. The in vitro and in vivo results showed that CLA-Bi-ZnO2@Lipo could target the infection-induced inflammatory mucosa through liposome mediated nanoparticle-tissue surface charge interaction and quickly respond to the gastric acid environment to release CLA, Bi3+, Zn2+, and H2O2. By oral administration per day, the acid triggered decomposition of CLA-Bi-ZnO2@Lipo could significantly increase intragastric pH to 6 within 30 min; The released CLA, Zn2+, and H2O2 further exerted synergistical anti-bacterial effects in which a ∼2 order higher efficacy in reducing MDR H. pylori burden was achieved in comparison with standard quadruple therapy (p < 0.05); The released Zn2+ and Bi3+ could also alleviate mucosal inflammation. Most importantly, the CLA-Bi-ZnO2@Lipo exhibited superior biosafety and nearly no side effects on intestinal flora. Overall, this study developed a highly integrated and safe anti-MDR H. pylori agent which had great potential to be used as an alternative treatment for MDR H. pylori eradication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call