Abstract

An all-in-one nanosensor was developed for the magnetic enrichment and ratiometric surface-enhanced Raman scattering (SERS) detection of Escherichia coli (E. coli). The all-in-one nanosensor was constructed through the chemical integration of four components into a single nanoparticle, which include a manganese ferrite nanoparticle serving as the magnetic core, a thin silver shell as the SERS substrate, a self-assembled layer of 4-mercaptobenzoic acid (MBA) molecules as the SERS internal standard, and a MBA-conjugated layer of aptamer sequences as the capture probe of E. coli. In the detection of E. coli in food, the target cells were first captured by the nanosensors and magnetically enriched in a short time of 15 min, and then the ratiometric SERS was performed through the Raman intensity ratio between two specific SERS peaks produced by the captured E. coli and the internal MBA. The pre-concentration and ratiometry enabled the nanosensor to detect E. coli with a detection limit down to 10 CFU/mL. The all-in-one nanosensor was successfully applied for the detection of E. coli in various liquid foods including milk, juice, tea, and coffee, with recoveries ranging from 89 to 110% and relative standard deviation lower than 1.7%. In comparison with the previous sandwich strategy adopted by most SERS sensors, this nanosensor endowed with an easier use and a lower cost is more sensitive and reproducible, leading to a great potential in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.