Abstract
AbstractThe dual‐ion battery (DIB) is a promising energy storage system that demonstrates high‐power characteristics and fast‐charging capability. However, conventional electrolytes are not compatible with the high‐voltage graphite cathode and the reactive Li metal anode, thus leading to the poor cycle stability and low Coulombic efficiency of the DIB. Here, an all‐fluorinated electrolyte is reported that can enable a highly stable operation of the graphite||Li DIB up to 5.2 V by forming robust and less‐resistive passivation films on both electrodes to reduce side reactions. The electrolyte allows reversible PF6– anion insertion/extraction and Li+ cation plating/stripping in the graphite||Li battery, achieving stable cycling with 94.5% capacity retention over 5000 cycles at 500 mA g–1, high capacity utilization of 91.8% of the available charge capacity at 50 C (5000 mA g–1), and also minimal self‐discharge. At a low temperature of 0 °C, this all‐fluorinated electrolyte exhibits 97.8% of the room temperature reversible capacity, along with ≈100% capacity retention after more than 3000 cycles, at 5 C. This work sheds a new light on the development of fluorinated electrolytes for high voltage and long‐lasting DIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.