Abstract
Lightweight carbon electrodes are the new candidates for photovoltaic devices due to their temperature resistivity, ease of fabrication, and skin comfortability. Herein, a sustainable and facile strategy has been proposed for metal free all carbon dye sensitized solar cell (C-DSSC), assembled by stacking carbon front electrode (CFE) and carbon counter electrode (CCE). The CFE demonstrated adequate light transmittance (70–50%) while maintaining efficient photon absorption and charge separation mechanism due to dye coated TiO2 nanorods (P25-R). The graphene dip coated carbon counter electrode (Gr@CCE) possesses remarkable electro catalytic activity towards I3-/I- redox couple with low charge transfer resistance (RCT = 0.79 Ω). The sustainable design of C-DSSC attained ~6 ± 0.5% efficiency with high photocurrent density of 18.835 mA. cm−2. The superior performance of C-DSSC is accredited to its improved charge mobility, low internal resistance, and better interfacial electrode contact. The thickness of C-DSSC is ≤3 mm eliminates the need for rigid glass in DSSC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.