Abstract

This article describes the design and operation of a dye sensitized solar cell with an all carbon counter electrode and plastic electrolyte. For the construction of the counter electrode, the conventional thin platinum catalytic layer was replaced by a novel large-effective-surface-area polyaromatic hydrocarbon (LPAH) film, and the fluorine doped tin oxide substrate was replaced by a graphite film. In this way the internal resistance of the cell was substantially reduced and the cell efficiency can reach nearly 9% using the masked frame measurement technique. To achieve such an efficiency, a series of experiments was carried out to assure that the LPAH layer possesses superior catalytic activity and energy efficiency compared to the commonly used carbon black. To this end a unique LPAH layer synthesis technique was developed. It involved the production of LPAH from a hydrogen arc along with the use of an amphiphilic triblock copolymer (P123) to improve the suspendability of LPAH to form a homogeneous catalytic layer. This layer was then attached to a graphite film to form the counter electrode for the dye sensitized solar cell. Details of the properties of the LAPH and the newly designed solar cell are reported herein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.