Abstract

Aluminium anions with an unoccupied orbital are generally considered as highly difficult synthetic targets, as aluminium is the most electropositive element in the p block. Stabilizing effects from two nitrogen substituents and/or the coordination of a Lewis base were recently used to synthesize the first examples of anionic nucleophilic aluminium species. Here we show the synthesis and properties of a potassium salt of a non-stabilized dialkylaluminium anion that exhibits very strong basicity, which reflects the electropositive character of aluminium. An X-ray diffraction analysis revealed a monomeric structure and the shortest Al-K distance hitherto reported. The ultraviolet visible spectrum in combination with density functional theory calculations suggests an electronic structure characterized by a lone pair of electrons and an unoccupied p orbital on the aluminium centre. This species readily deprotonates benzene to form the corresponding (hydrido)(phenyl)aluminate. Reactions with other electrophiles corroborate the nucleophilicity of the aluminium centre.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call