Abstract

A new alkali tin(II) halide compound, Na3Sn2F6Cl, is synthesized by hydrothermal method. This compound crystallizes trigonally in space group of R-3c (167), and processes a zero-dimensional (0D) structure consisted of Na+ cations, Cl− anions and the isolated [SnF3]- trigonal pyramids in which the stereochemically active 5s2 lone pair electrons are attached to the Sn2+ cations. Interestingly, the [SnF3]− trigonal pyramids are parallel arranged in the a-b plane, while oppositely arranged in line with rotation along the c- axis. Moreover, the energy bandgap, thermal stability and electronic structure of Na3Sn2F6Cl are characterized and the results reveal that this compound has and indirect bandgap of 3.88eV and is stable under 270°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.