Abstract
Alkaline phosphatase (ALP)-induced in situ fluorescent immunosensor is less investigated and reported. Herein, a high-performance ALP-labeled in situ fluorescent immunoassay platform was constructed. The developed platform was based on a fluorogenic self-assembly reaction between pyridineboronic acid (PyB(OH)2) and alizarin red S (ARS). We first used density functional theory (DFT) to theoretically calculate the changes of Gibbs free energy of the used chemicals before and after the combination and simulated the electrostatic potential on its′ surfaces. The free ARS and PyB(OH)2 exist alone, neither emits no fluorescence. However, the ARS/PyB(OH)2 complex emits strong fluorescence, which could be effectively quenched by PPi based on the stronger affinity between PPi and PyB(OH)2 than that of ARS and PyB(OH)2. PyB(OH)2 coordinated with ARS again in the presence of ALP due to the ALP-catalyzed hydrolysis of PPi, and correspondingly, the fluorescence was restored. We chose cTnI and SARS-CoV-2 N protein as the model antigen to construct ALP-induced immunosensor, which exhibited a wide dynamic range of 0–175 ng/mL for cTnI and SARS-CoV-2 N protein with a low limit of detection (LOD) of 0.03 ng/mL and 0.17 ng/mL, respectively. Moreover, the proposed immunosensor was used to evaluate cTnI and SARS-CoV-2 N protein level in serum with satisfactory results. Consequently, the method laid the foundation for developing novel fluorescence-based ALP-labeled ELISA technologies in the early diagnosis of diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.