Abstract

Electronic waste (E-waste) is accumulating rapidly globally and pose a significant environmental challenge. One of the ways to cover the cost of waste processing (in addition to reducing the costs associated with landfill) is through recovery of metals. In addition, toxic and dangerous metals can and must be removed prior to repurposing, incineration or pyrolysis of the plastic substrates. E-waste is usually either transported to landfills or processed by pyrometallurgical and hydrometallurgical processes. Recently, a number of hydrometallurgical approaches have been considered in metals recovery from different electronic components. In this study, glycine (amino acetic acid) or its salts is considered as a lixiviant in an alkaline environment for base and precious metals recovery from shredded and ground printed circuit boards (PCBs). It was found that alkaline glycine solutions selectively dissolve copper, zinc, and lead over precious metals. Gold and silver were then recovered in a subsequent leaching step using glycine and small amounts of cyanide (at starvation levels, implying no free cyanide is present). The leach system remains alkaline throughout both stages of processing. In the two-stage glycine leaching system, gold, silver, zinc, lead and copper recoveries were 92.1%, 85.3%, 98.5%, 89.8%, and 99.1% respectively. The recoveries of precious and base metals by direct cyanidation, single stage glycine–cyanide leaching, and ammonia leaching were lower than the recoveries of these metals using the two-stage glycine and glycine–cyanide systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call