Abstract

As persistent organic pollutants, short-chain chlorinated paraffins (SCCPs) have attracted wide attention in the field of environmental health risk and hazardous waste management. Efficient dechlorination of high content of SCCPs in plastic waste is the committed step for its detoxification and safety treatment. In this study, a high-efficiency and low-temperature process for dechlorination and hydrocarbons recovery from typical SCCPs (52#SCCPs) by subcritical water (SubCW) with alkali enhancer was developed. The introduction of alkali enhancer in the SubCW process had significantly enhanced effect on the dechlorination of 52#SCCPs, and the order of the enhanced effect of alkali enhancer for the dechlorination was NaOH > Na2CO3 > NaHCO3 > NH3·H2O > KOH. The dechlorination behaviors of 52#SCCPs in the NaOH-enhanced SubCW process were studied systematically under different conditions including temperature, residence time, alkali concentration, and volume ratio. The results showed that high-efficiency dechlorination (100 %) of 52#SCCPs could be achieved by the NaOH-enhanced SubCW process at low temperature for a short time (250 °C, 5 min). All of the chlorine released from the molecular chain of 52#SCCPs was transferred to the aqueous phase in the form of inorganic chlorine. The continuous HCl elimination reaction was the primary dechlorination mechanism for 52#SCCPs in the NaOH-enhanced SubCW process. After the dechlorination of 52#SCCPs, high value-added hydrocarbons such as 2,4-hexadiyne (31.74 %) could be obtained. The alkali-enhanced SubCW process proposed in this study is believed to be an environmentally friendly and high-efficiency method for dechlorination/detoxification and resource recovery of SCCPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.